Using Excel for measurement analysis

-Functions (built in and user defined)
-Average, stdev

- Normdist
- Tinv \& Tdist
-Countif
-Frequency
-Slope, intercept, RSQ
-Linest
- Devsq
- Steyx
-Mmult
- Minverse
- User Defined functions

Basic functions

=average (num1, num2, ...)
=stdev (num1, num2, num3, ..)

$\#$	x
1.00	23.80
2.00	24.20
3.00	23.40
4.00	26.20
5.00	25.50
6.00	25.90
7.00	24.80
8.00	26.70
9.00	23.90
10.00	24.30
average	24.87
stdev	1.14

Gauess Normal Distribution

Normdist Function
 $$
p(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2} \frac{\left(x-x^{\prime}\right)^{2}}{\sigma^{2}}\right]
$$

=normdist(x , xmean, sigmma, True or false)
If the last parameter is True then the probability
from -inf to x is found $(-\infty<P<=x)$
If the last parameter is false then the probability density at x is found $(p(x))$

Example: the probability for x between $-\infty$ to $x=27$, with xmean $=25$ and sigmma $=1$ is given by
=normdist(27,25,1,True) gives 0.97725
To get the probability from $x=x m e a n$ to $x=27$ (half side only)
$=$ normdist(27,25,1,True)-0.5 gives 0.4772 (as table 4.3)

You can generate table 4.3 in your textbook

Using Excel Normdis function

> Values in Table 4.3=Values from excel function normdis(x,x_mean,sigmma,True)-0.5

Tinv function

T estimator

Tinv(1-P,v)

To get the t estimator based on the probability and degree of freedom v. P is a fraction

Example:
$=\operatorname{Tinv}((1-0.9), 10)$ is found to be 1.812

$$
t_{10,0.9}=1.812
$$

You can generate Table 4.4 in your book

Tdist function

T estimator

tdist(t, v, tails)
To find the probability minus 1 (i.e 1-P) if t estimator and the degree of freedom are given

Tails=2 for two sided distribution as we have in our textbook

Example: Assume $t=1.771, \mathrm{v}=13$, Tails=2 then
$=$ tdist($1.771,13,2$) gives 0.1 or the probability $\mathrm{P}=1-0.1=0.9$

Countif function

To count based on condition
For example count the number of students who have scored 60 or less
$=$ Countif (Range,"<60")
Notice that the condition is written between quotes
=countif(A2:A16,"<60")
The answer is 4 students

Data
60
70
80
90
100
80
60
50
40
100
90
40
50
60
70

Frequency function

Frequency (data, bins)
Example: Since we have 3 bins then we have four intervals. Select 4 column cells and type:
=frequency(A2:A16,B2:B4)
You have to hit Cntl_shift_return
You will get the following results

Data	Bin
60	60
70	80
80	90
90	
100	
80	
60	
50	
40	
100	
90	
40	
50	
60	
70	

Frequency function-Continue

The meaning of the frequency results are

	Bin
Data	60
60	80
70	90
80	
90	
100	
80	
60	
50	
40	
100	
90	
40	
50	
60	
70	

Histogram

Bin	
60	
80	
90	

Slope, intercept and $\mathbf{R}^{\mathbf{2}}$ for a line

A	B

$=$ Slope (y values, x values)
=intercept(y values, x values)

\mathbf{x}	\mathbf{y}
2	2.3
3	4.5
4	6.7
5	9.8
6	12.3
7	15.4

$=r s q(y$ values, x values $)$
$=$ slope $(\mathrm{B} 2: B 7, \mathrm{~A} 2: A 7)=2.628$
$=$ intercept $(\mathrm{B} 2: B 7, \mathrm{~A} 2: A 7)=-3.3285$
$=\mathrm{rsq}(\mathrm{B} 2: B 7, \mathrm{~A} 2: A 7)=0.995$

Line statistics

Linest function

$=$ Linest(y values, x values, const, stat) const and stat are logical

x	y
2	2.3
3	4.5
4	6.7
5	9.8
6	12.3
7	15.4

const=true then calculate b
const=false then force b to be zero
stat=true then calculate addition regression statistics
stat=false then only calculate the slope m, and the intercept b

Example on using linest function

Select 5 rows and 2 column cells and type the function
=linest(y_values,x_values,true,true) then hit ctrl_shift and return together since this is an array operation. You

\mathbf{x}	y
2	2.3
3	4.5
4	6.7
5	9.8
6	12.3
7	15.4

2.628571	-3.32857
0.084997	0.409106
0.995835	0.355568
956.3842	4
120.9143	0.505714

Devsq Function

Sum of squares of deviation between y and mean y

$$
S S y=\sum_{i}\left(y_{i}-\bar{y}\right)^{2}
$$

Notice that the standard of deviation is

$$
S_{y}=\sqrt{\frac{\left(y_{i}-\bar{y}\right)^{2}}{N-1}}=\sqrt{\frac{S S y}{N-1}}
$$

STEYX Function

Standard error of $\mathrm{y}(\mathrm{x})$

$$
\begin{aligned}
& s_{y x}=\sqrt{\frac{\sum_{i}\left(y_{i}-y_{c i}\right)^{2}}{v}} \quad v=N-(m+1) \\
& y_{c} \pm t_{v, P} s_{y x}\left[\frac{1}{N}+\frac{\left(x_{i}-\bar{x}\right)^{2}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}\right]^{1 / 2}
\end{aligned}
$$

When the variation in x is neglected then

$$
y_{c} \pm t_{v, P} S_{y x}
$$

STEYX Function

=steyx(y vales, x values)
$=$ steyx(A2:A7),(B2:B7)
$=0.031804$

x	y
2	2.3
3	4.5
4	6.7
5	9.8
6	12.3
7	15.4

Matrix operations

To multiply a row by a column do the following
Select a cell and type
=mmult(B2:D:2,F1:F3)
and hit cntl_shift and return. You will get 32

Solving simultaneous equations

It is required to solve the
following simultaneous system of equation
It is required to find the values of x, y and z

$$
\left[\begin{array}{ccc}
2 & 4 & 6 \\
2 & 3 & 7 \\
6 & -2 & 8
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
20 \\
20.5 \\
19
\end{array}\right]
$$

Example
1-Type the above values in a sheet starting with say D20
2-Select one columns with three rows and type
=mmult(minverse(D20:F23),H20:H22). Type cntl_shift_return.
Where minverse means matrix inverse

Solving simultaneous equations

The results will be

Which are the values of x, y and z

User defined functions

To access the visual basic editor
tools \rightarrow macros \rightarrow visual basic editor
Or just type Alt-F11
You will see the visual basic
Go to insert and insert a module
You can view the project ad see that a module is added to the project. In the module now you can add functions and subroutines

User defined functions

Suppose we want to add a function that do the followings

$$
y=a_{0}+a_{1} x+a_{2} x^{2}
$$

Function myfun(x)

```
a0=5
a1=0.5
a2=0.75
myfun=a0+a1*x+a2* x^2
```

End function

Now you can go to the excel sheet and type =myfun(1) the answer will be 6.25

User defined functions

User defined functions

